15 research outputs found

    FC2 stabilizes POR and suppresses ALA formation in the tetrapyrrole biosynthesis pathway

    Get PDF
    During photoperiodic growth, the light-dependent nature of chlorophyll synthesis in angiosperms necessitates robust control of the production of 5-aminolevulinic acid (ALA), the rate-limiting step in the initial stage of tetrapyrrole biosynthesis (TBS). We are interested in dissecting the post-translational control of this process, which suppresses ALA synthesis for chlorophyll synthesis in dark-grown plants. Using biochemical approaches for analysis of Arabidopsis wild-type (WT) and mutant lines as well as complementation lines, we show that the heme-synthesizing ferrochelatase 2 (FC2) interacts with protochlorophyllide oxidoreductase and the regulator FLU which both promote the feedback-controlled suppression of ALA synthesis by inactivation of glutamyl-tRNA reductase, thus preventing excessive accumulation of potentially deleterious tetrapyrrole intermediates. Thereby, FC2 stabilizes POR by physical interaction. When the interaction between FC2 and POR is perturbed, suppression of ALA synthesis is attenuated and photoreactive protochlorophyllide accumulates. FC2 is anchored in the thylakoid membrane via its membrane-spanning CAB (chlorophyll-a-binding) domain. FC2 is one of the two isoforms of ferrochelatase catalyzing the last step of heme synthesis. Although FC2 belongs to the heme-synthesizing branch of TBS, its interaction with POR potentiates the effects of the GluTR-inactivation complex on the chlorophyll-synthesizing branch and ensures reciprocal control of chlorophyll and heme synthesis.Chinese Scholarship CouncilDeutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Peer Reviewe

    Impaired function of the phage-type RNA polymerase RpoTp in transcription of chloroplast genes is compensated by a second phage-type RNA polymerase

    Get PDF
    Although chloroplast genomes are small, the transcriptional machinery is very complex in plastids of higher plants. Plastidial genes of higher plants are transcribed by plastid-encoded (PEP) and nuclear-encoded RNA polymerases (NEP). The nuclear genome of Arabidopsis contains two candidate genes for NEP, RpoTp and RpoTmp, both coding for phage-type RNA polymerases. We have analyzed the use of PEP and NEP promoters in transgenic Arabidopsis lines with altered RpoTp activities and in Arabidopsis RpoTp insertion mutants lacking functional RpoTp. Low or lacking RpoTp activity resulted in an albino phenotype of the seedlings, which normalized later in development. Differences in promoter usage between wild type and plants with altered RpoTp activity were also most obvious early in development. Nearly all NEP promoters were used in plants with low or lacking RpoTp activity, though certain promoters showed reduced or even increased usage. The strong NEP promoter of the essential ycf1 gene, however, was not used in mutant seedlings lacking RpoTp activity. Our data provide evidence for NEP being represented by two phage-type RNA polymerases (RpoTp and RpoTmp) that have overlapping as well as gene-specific functions in the transcription of plastidial genes

    B‐GATA factors are required to repress high‐light stress responses in Marchantia polymorpha and Arabidopsis thaliana

    Get PDF
    GATAs are evolutionarily conserved zinc-finger transcription factors from eukaryotes. In plants, GATAs can be subdivided into four classes, A–D, based on their DNA-binding domain, and into further subclasses based on additional protein motifs. B-GATAs with a so-called leucine-leucine-methionine (LLM)-domain can already be found in algae. In angiosperms, the B-GATA family is expanded and can be subdivided in to LLM- or HAN-domain B-GATAs. Both, the LLM- and the HAN-domain are conserved domains of unknown biochemical function. Interestingly, the B-GATA family in the liverwort Marchantia polymorpha and the moss Physcomitrium patens is restricted to one and four family members, respectively. And, in contrast to vascular plants, the bryophyte B-GATAs contain a HAN- as well as an LLM-domain. Here, we characterise mutants of the single B-GATA from Marchantia polymorpha. We reveal that this mutant has defects in thallus growth and in gemma formation. Transcriptomic studies uncover that the B-GATA mutant displays a constitutive high-light (HL) stress response, a phenotype that we then also confirm in mutants of Arabidopsis thaliana LLM-domain B-GATAs, suggesting that the B-GATAs have a protective role towards HL stress.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Peer Reviewe

    One RNA polymerase serving two genomes

    No full text
    The land plant Arabidopsis thaliana contains three closely related nuclear genes encoding phage-type RNA polymerases (RpoT;1, RpoT;2 and RpoT;3). The gene products of RpoT;1 and RpoT;3 have previously been shown to be imported into mitochondria and chloroplasts, respectively. Here we show that the transit peptide of RpoT;2 possesses dual targeting properties. Transient expression assays in tobacco protoplasts as well as stable transformation of Arabidopsis plants demonstrate efficient targeting of fusion peptides consisting of the N-terminus of RpoT;2 joined to green fluorescent protein to both organelles. Thus, RpoT;2 might be the first RNA polymerase shown to transcribe genes in two different genomes. RNA polymerase activity of recombinant RpoT;2 is uneffected by the inhibitor tagetin, qualifying the gene product of RpoT;2 as a phage-type polymerase

    Arabidopsis RIBA Proteins: Two out of Three Isoforms Have Lost Their Bifunctional Activity in Riboflavin Biosynthesis

    Get PDF
    Riboflavin serves as a precursor for flavocoenzymes (FMN and FAD) and is essential for all living organisms. The two committed enzymatic steps of riboflavin biosynthesis are performed in plants by bifunctional RIBA enzymes comprised of GTP cyclohydrolase II (GCHII) and 3,4-dihydroxy-2-butanone-4-phosphate synthase (DHBPS). Angiosperms share a small RIBA gene family consisting of three members. A reduction of AtRIBA1 expression in the Arabidopsis rfd1mutant and in RIBA1 antisense lines is not complemented by the simultaneously expressed isoforms AtRIBA2 and AtRIBA3. The intensity of the bleaching leaf phenotype of RIBA1 deficient plants correlates with the inactivation of AtRIBA1 expression, while no significant effects on the mRNA abundance of AtRIBA2 and AtRIBA3 were observed. We examined reasons why both isoforms fail to sufficiently compensate for a lack of RIBA1 expression. All three RIBA isoforms are shown to be translocated into chloroplasts as GFP fusion proteins. Interestingly, both AtRIBA2 and AtRIBA3 have amino acid exchanges in conserved peptides domains that have been found to be essential for the two enzymatic functions. In vitro activity assays of GCHII and DHBPS with all of the three purified recombinant AtRIBA proteins and complementation of E. coli ribA and ribB mutants lacking DHBPS and GCHII expression, respectively, confirmed the loss of bifunctionality for AtRIBA2 and AtRIBA3. Phylogenetic analyses imply that the monofunctional, bipartite RIBA3 proteins, which have lost DHBPS activity, evolved early in tracheophyte evolution

    In vivo functional analysis of the structural domains of FLUORESCENT (FLU)

    No full text
    The control of chlorophyll (Chl) synthesis in angiosperms depends on the light-operating enzyme protochlorophyllide oxidoreductase (POR). The interruption of Chl synthesis during darkness requires suppression of the synthesis of 5-aminolevulinic acid (ALA), the first precursor molecule specific for Chl synthesis. The inactivation of glutamyl-tRNA reductase (GluTR), the first enzyme in tetrapyrrole biosynthesis, accomplished the decreased ALA synthesis by the membrane-bound protein FLUORESCENT (FLU) and prevents overaccumulation of protochlorophyllide (Pchlide) in the dark. We set out to elucidate the molecular mechanism of FLU-mediated inhibition of ALA synthesis, and explored the role of each of the three structural domains of mature FLU, the transmembrane, coiled-coil and tetratricopeptide repeat (TPR) domains, in this process. Efforts to rescue the FLU knock-out mutant with truncated FLU peptides revealed that, on its own, the TPR domain is insufficient to inactivate GluTR, although tight binding of the TPR domain to GluTR was detected. A truncated FLU peptide consisting of transmembrane and TPR domains also failed to inactivate GluTR in the dark. Similarly, suppression of ALA synthesis could not be achieved by combining the coiled-coil and TPR domains. Interaction studies revealed that binding of GluTR and POR to FLU is essential for inhibiting ALA synthesis. These results imply that all three FLU domains are required for the repression of ALA synthesis, in order to avoid the overaccumulation of Pchlide in the dark. Only complete FLU ensures the formation of a membrane-bound ternary complex consisting at least of FLU, GluTR and POR to repress ALA synthesis.Peer Reviewe

    Tetrapyrrole Biosynthetic Enzyme Protoporphyrinogen IX Oxidase 1 Is Required for Plastid RNA Editing

    No full text
    RNA editing is a posttranscriptional process that covalently alters the sequence of RNA molecules and plays important biological roles in both animals and land plants. In flowering plants, RNA editing converts specific cytidine residues to uridine in both plastid and mitochondrial transcripts. Previous studies identified pentatricopeptide repeat (PPR) motif-containing proteins as site-specific recognition factors for cytidine targets in RNA sequences. However, the regulatory mechanism underlying RNA editing was largely unknown. Here, we report that protoporphyrinogen IX oxidase 1 (PPO1), an enzyme that catalyzes protoporphyrinogen IX into protoporphyrin IX in the tetrapyrrole biosynthetic pathway, plays an unexpected role in editing multiple sites of plastid RNA transcripts, most of which encode subunits of the NADH dehydrogenase-like complex (NDH), in the reference plant Arabidopsis thaliana. We identified multiple organellar RNA editing factors (MORFs), including MORF2, MORF8, and MORF9, that interact with PPO1. We found that two conserved motifs within the 22-aa region at the N terminus of PPO1 are essential for its interaction with MORFs, its RNA editing function, and subsequently, its effect on NDH activity. However, transgenic plants lacking key domains for the tetrapyrrole biosynthetic activity of PPO1 exhibit normal RNA editing. Furthermore, MORF2 and MORF9 interact with three PPRs or related proteins required for editing of ndhB and ndhD sites. These results reveal that the tetrapyrrole biosynthetic enzyme PPO1 is required for plastid RNA editing, acting as a regulator that promotes the stability of MORF proteins through physical interaction

    An Arabidopsis

    No full text
    corecore